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Abstract: The Takagi–Sugeno fuzzy system is implemented based on several back-

propagation neural networks (BP-NNs) and has been applied to identification of

official and unofficial rhubarb samples based on their near-infrared spectra. Rhubarb

is one of the most important Chinese medical herbs. It is of importance to identify

official and unofficial rhubarb samples based on nondestructive near-infrared

spectrometry for quality control in Chinese herbal products. Near-infrared diffuse

reflectance spectrometry and the Takagi–Sugeno fuzzy system were used to classify

52 rhubarb samples, and the effects of the number of hidden neurons and of

momentum parameters on prediction were investigated. The results obtained by

using the Takagi–Sugeno fuzzy system were better than those by commonly used

BP networks. With proper network training parameters, 100% correctness can be

obtained by using the Takagi–Sugeno fuzzy system.

Keywords: Artificial neural network, quality control, rhubarb, Takagi–Sugeno fuzzy

system

INTRODUCTION

Rhubarb is one of the most important herbal medicines in China. There are

about 60 species of rhubarb in the world. Rhubarb is grown in broad areas
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in Asian temperate and subtropical zones. Rhubarb has been used for

thousands of years in China. The main pharmaceutical functions include

purging the pathogenic fire, antibacterial, normalizing functioning of the

gallbladder, liver protection, hemostasis, promoting blood circulation, and

so forth.[1,2] In the Chinese Pharmacopoeia, three species of rhubarb are

formally recorded. They are Rheum palmatum L., R. tanguticum, and

R. officinale Baillon.[3] Some other species of rhubarbs that are not given in

the Chinese Pharmacopoeia are known as unofficial rhubarb samples. The

medicinal functions of the unofficial rhubarb were not as good as those of

official rhubarb. Therefore, the unofficial rhubarb samples are not permitted

to be used in traditional Chinese herbal medicinal products. However, in

some cases root and rootstock of unofficial rhubarb were mixed into official

rhubarb to formulate commercial products. To ensure the quality of official

rhubarb products and their clinical curative effect, several techniques for

identifying crude rhubarb-based drugs according to their exterior configura-

tion, appearance characteristics by microscopy, were used,[1] but these

methods can hardly identify the powdered official and unofficial rhubarb

samples.

Near-infrared (NIR) spectroscopy has many advantages over mid- and

far-infrared spectroscopic methods in terms of speed, simplicity in sample

preparation, cost, efficiency, and flexibility. With the development of

computer technology and chemometrics, NIR techniques have been applied

in broad areas including agriculture,[4,5] food industry,[6] petroleum

industry,[7,8] pharmaceutical analysis,[9,10] biomedical technology,[11] and

many others.

The classification of medicinal herbs by NIR spectroscopy relies on

chemometric methods. Principal component analysis (PCA) and partial least

squares (PLS) are commonly used for interpretation of NIR spectroscopic

data.[12] Calibration of NIR spectroscopic measurements is limited by the

use of linear mathematical models. Neural network calibration shares many

of the advantages of other calibration techniques, including avoiding overfit-

ting the training set and determination of optimal levels of model parameters.

Neural networks are mathematical models inspired by biological models. The

basic processing unit is a neuron, which receives many inputs (dendrites) and

generates one output. The neuron computes a weighted sum of the inputs. The

weights are determined by learning. Learning in a feed-forward network

consists of adjusting the weights of a neuron based on the error of the

output. The implementation in the output error is gradual, and many

training iterations are required. Various artificial neural networks (ANNs)

have been used for pattern recognition and data interpretation in near-

infrared spectroscopy[13 – 15] and many other fields.[16,17] ANN has been

used to classify Chinese traditional medicine and to discriminate between

the medicinal materials by application of near-infrared spectroscopy.[2]

The Takagi–Sugeno fuzzy system has been used in many fields, especially

in fuzzy controls.[18 – 20] Relatively few applications of the Takagi–Sugeno
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system in chemistry have been reported. In the current paper, near-infrared

spectra of rhubarb samples were measured and then compressed by wavelet

transform. Takagi–Sugeno fuzzy systems were used to establish a model for

identification. The effects of some training parameters on the identification

of samples are discussed.

THEORETICAL BASIS

The Takagi–Sugeno model can be implemented based on a neural network–

driven fuzzy reasoning system. The system consists of Pþ 1 neural networks.

The networks NN1-NNP denote the functions in the conclusion parts of the

P rules respectively, and NNPþ1 is used to calculate the fitness of each rule

corresponding to an input vector.

If x1 is A1
j , x2 is A2

j , . . . , xn is An
j , then y is Bj, where A1

j , A2
j , . . . , An

j , and Bj

is fuzzy subsets. In the conclusion part, the model substituting fuzzy set

Bj with a function is commonly called the Takagi–Sugeno model. If x1 is

A1
j , x2 is A2

j , . . . , xn is An
j , then y ¼ fj (x), where fj (x) is a linear combination

of input variables, that is

fjðxÞ ¼ c1
j x1 þ c2

j x2 þ � � � þ cn
j xn þ cnþ1

j ð1Þ

The model divides input space into linear spaces because the input

variables are independent of each other. To avoid an increase of fuzzy rules

when the two models mentioned above are used, it is convenient to adopt

the number of the following model:

If X [ Pj; thus y ¼ fjðXÞ ð2Þ

in which X ¼ (x1, x2, . . . , xn), and Pj is a partial space divided from input

space. In the formula (2), the membership function cannot be determined

as a formula independently, so we only acquire the joint membership

function in the condition part using neural networks; similarly, the

function in the conclusion part can be expressed by neural networks. The

schematic diagram of the fuzzy system based on integration of neural

networks is shown in Fig. 1.

In Fig. 1, there are, in total, Pþ 1 neural networks, in which NN1 � NNP

are used to represent P rules of functions fi(X), and NNmf is used to

calculate the fitness of each rule corresponding to input vector. The output

of the fuzzy system can be calculated by the following formula

y ¼
XP

j¼1

mj � gj ð3Þ

where gj is the output value of NNj, and mj is weights of subnet.
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The steps of establishing and training the fuzzy system are as follows:

Step 1. Collect train samples for the fuzzy system.

Step 2. Use K-means method to cluster input vectors, and each cluster

corresponds to a rule. Because the samples are clustered into P

teams, there are P fuzzy rules for the fuzzy reasoning system.

Step 3. Train the network NNPþ1, which has n inputs and P outputs in its struc-

ture. The training samples can be constructed using following method:

If the training sample Xi is clustered into Sth team, we have:

vi
j ¼

on j ¼ S

off j = S j ¼ 1; 2; � � � ;P

�
ð4Þ

Wi ¼ vi
1;v

i
2; � � � ;v

i
S�1;v

i
S;v

i
Sþ1; � � � ;v

i
P

� �T
ð5Þ

where on/off correspond to 1 or 0, respectively. The training samples

(Xi, Wi) are constructed for the network NNPþ1. After training,

the final fitness vector U ¼ (m1, m2, . . . , mP) is used for each network

NNj (j ¼ 1, 2, . . . , P).

Step 4. Train the networks NN1 � NNP. Assume that NNS corresponds to the

Sth rule, thus, all of the samples in the S-th cluster is the training data

for the network NNS. Then, back-propagation algorithm is applied to

train the networks NN1 � NNP.

EXPERIMENTAL

Instrumentation and Data Acquisition

A FOSS 6500 NIR scanning monochromator (Foss NIR Systems Inc., Laurel,

MD, USA) with halide lamp and PbS detector was used for this work. The

Figure 1. Schematic description of Takagi–Sugeno fuzzy system.
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52 rhubarb samples used were different species and were collected from

different regions. The rhubarb samples were classified as official and unofficial

samples according to the Chinese Pharmacopoeia. Among these samples, 25

were official rhubarb samples (nos. 1–25) and 27 were unofficial rhubarb

samples (nos. 26–52). The diameter of the sample cell was 38 mm; the

thickness of the sample cell was 10 mm. The sample was shaken after each

measurement, and 50 measurements were averaged to obtain the final NIR

spectrum of each sample. The measurement wavelength ranged from

1100 nm to 2498 nm in 2-nm intervals. Therefore, 700 data points were

obtained for each sample measurement. The spectra were then compressed

by using the wavelet transform described in the next section. The spectral

data were saved as ASCII code and then processed with another Pentium

personal computer.

Data Processing and Computation

The measured near-infrared spectra were processed with a second-order

derivation to eliminate sloping backgrounds. To speed up the training

process, the NIR spectra with 700 variables were compressed by using

wavelet transform to 44 variables. Wavelet transform can effectively

compress the NIR spectra and keep the spectral features. The 44 variables

of the NIR spectra obtained by wavelet transform were used as input to the

networks. The Takagi–Sugeno fuzzy system was used to establish the classi-

fication model for identification of official and unofficial rhubarb samples. The

prediction set was selected by using the “leave-one-out” cross-validation

method.[21] This method leaves one sample for prediction at a time, and the

other n 2 1 samples are used for the training set. For the next test, another

sample is left as the prediction sample that is different from the previous

one, and also the training set includes the remaining n 2 1 samples. This

procedure is repeated until every sample has been selected as prediction

sample for one time. The output values were compared with expected output

values, and the network performance was evaluated based on the comparison.

The internal functions of Matlab 5.0 (Mathworks, Inc., Natick, MA, USA)

were used for the wavelet transform computation. The Matlab Neural Network

toolbox was used for writing the calculation program for Takagi–Sugeno in

this lab. The Takagi–Sugeno fuzzy system was implemented based on three

BP networks, in which NNmf is used to give suitability of classification

rules, while NN1 and NN2 were used to represent functions of classification

rules. The trainbpx.m for fast back-propagation function and log sigmoid

transfer function were used.

RESULTS AND DISCUSSION

The chemical composition of rhubarb sample is very complicated. The main

components in rhubarb include aloe-emodin, rhein, emodin, sennoside A,
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sennoside B, sennoside E, sennoside F, and many other minor components.

Because of the complexity of overlapped overtones and combinational

bands in the near-infrared region, it is not possible to establish direct relation-

ships between chemical composition and NIR spectra of rhubarb samples like

those used in UV-Vis spectrometry.

In the current work, the fingerprints (overall features) of official and

unofficial rhubarb samples were used for the classification. It is impossible

to recognize the differences of spectral features between official and unofficial

rhubarb samples, because the spectral differences between official and unoffi-

cial rhubarb samples are so small. Correlation coefficients of NIR spectra

between some official and unofficial rhubarb samples have been calculated

to evaluate the similarity of the NIR spectra. The correlation coefficients

between official and unofficial rhubarb samples with conventional NIR

spectra are close to 0.999. However, when second-order derivative NIR spectra

were used, the correlation coefficients were lowered down to 0.96–0.97 for

most samples. Therefore, to enhance the resolution of spectra and to

eliminate the sloping backgrounds of the NIR spectra, second-order derivative

NIR spectra were used for the classification study.

Principal component analysis (PCA) and partial least squares (PLS) are

commonly used methods for sample identification and qualification. However,

for such a difficult classification problem, the conventional statistical methods

would not be work well. Thus, various artificial neural networks have been

tried to solve this problem in our laboratory.

Unfortunately, only 52 rhubarb samples were used for the current study,

because the rhubarb samples, especially the official rhubarb samples, are quite

difficult to collect. This number of samples is sufficient to establish a reliable

classification model, although more samples are helpful to get a better model.

In the optimization process, five samples were selected at random from each

class of samples as a test set, and the remaining samples are used as a training

set. The SEC and SEP were calculated to evaluate the model performance.

Effect of Number of Neurons in Hidden Layer

The complexity of the network architecture depends on the number of hidden

units. In most situations, there is no way to determine the best number of

hidden units without training several networks and estimating the generaliz-

ation error of each. If too few hidden units are used, the high training error

and high generalization error will be obtained due to underfitting and high stat-

istical bias. However, if too many hidden units are used, low training error can

be obtained, but high generalization error will result due to overfitting and

high variance.

The Takagi–Sugeno fuzzy system is implemented based on three

BP networks, NNmf, NN1, and NN2. Therefore, it seems necessary to investi-

gate the effect of hidden neurons and to determine the optimal number of
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hidden neurons. In the current work, SEP (standard error of prediction) was

used to evaluate the network performance. The effect of hidden neurons on

SEPs is shown in Fig. 2.

It can be seen that different numbers of hidden neurons have different

effects on the SEPs. Therefore, it is possible to adjust the number of hidden

neurons to get better performance. From Fig. 2a it can be seen that when

7 hidden neurons of NNmf were used, the minimal SEP, 1.757, was

obtained. When 8 hidden neurons of NN1 were used, the minimal SEP,

1.833, was obtained, and for 3 hidden neurons of NN2, 1.863 was obtained.

Effect of Momentum Parameter

Learning rate and momentum are two important parameters in network

training. In a standard back-propagation network, too low a learning rate

makes the network learn very slowly, and too high a learning rate makes

the weights and objective function diverge, so there is no learning at all.

Momentum is also an important parameter in training computation formula.

A momentum parameter is used to avoid the training network being trapped

in a local minimum. In the internal function of MATLAB, trainbpx.m

Figure 2. Effect of hidden neurons on prediction. (a) NNmf subnet, (b) NN1 subnet,

and (c) NN2 subnet.
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adjusts the learning rate automatically during the training process. Therefore,

the effects of momentum parameter were investigated in the current study. The

effects of momentum parameters on SEPs are shown in Fig. 3.

It can be seen that different momentum parameters have various effects

on prediction errors. In our case, a momentum of 0.9 seems optimal for the

three networks, NNmf, NN1, and NN2. If the momentum used is too large,

the network will not converge.

There is no significant difference between the SEPs for different

momentum parameters. For example, SEP ¼ 1.89% for momentum ¼ 0.2

and SEP ¼ 1.86% for momentum ¼ 0.9 are not significantly different. In

this case, a relatively larger momentum parameter was chosen to avoid the

possibility of a model being trapped in a local minimum in the training process.

Identification of Official and Unofficial Rhubarb Samples

The identification results obtained by using the Takagi–Sugeno fuzzy system

for official and unofficial rhubarb samples are shown in Fig. 4. It should be

Figure 3. Effect of momentum on prediction. (a) NNmf subnet, (b) NN1 subnet,

(c) NN2 subnet.
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noticed that the classification results shown in Fig. 4 were obtained with

independent validation samples. The validation samples were selected by

using the leave-one-out method. The expected output value of the official

rhubarb was set to 1.0 and that of the unofficial rhubarb to 0.0. With

optimized parameters, 100% of the rhubarb samples were identified correctly.

To show the effectiveness of the Takagi–Sugeno system, a back-

propagation neural network (BP-NN) model was used for a comparison

study. The BP-NN was constructed with 44 input units, 5 hidden units, and

1 output unit. The same official and unofficial rhubarb samples were used,

and the same NIR spectra with wavelet transform compressed were used for

the BP-NN training and prediction tests. Fifty rhubarb samples from among

a total of 52 samples were identified correctly, so the correct identification

was 96.15% with the BP-NN model.

CONCLUSIONS

Near-infrared spectroscopy and the Takagi–Sugeno system have been used

for identification of official and unofficial rhubarb samples. The powdered

rhubarb samples can be analyzed directly and without any complicated

pretreatment. The NIR spectra were wavelet compressed from 700 to

44 variables, and then the compressed spectra were used to establish a classi-

fication model. Independent samples were used to test the model, and 100% of

rhubarb samples were classified correctly, which was slightly better than those

Figure 4. Prediction results of rhubarb samples by using Takagi–Sugeno fuzzy

system.
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by BP networks. This method can be used for quality control of rhubarb

samples and products. Further work involving an increase in the number of

samples in the database and provision of an independent validation of the

models is under consideration.
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